SpacePy In Action: Syntax and Output

spacepy commands in red || matplotlib commands in blue

Fetch and Plot OMNI Data

>>> import spacepy.omni as om

>>> import spacepy.time as spt

>>> ticks = spt.tickrange(‘2007-03-07T00:00:00", \
*2007-05-16T00:00:00", 1./24.)

>>> data = om.get_omni(ticks)

>>> fig = figure()

>>> ax0 = fig.add_subplot(211)

>>> ax0.plot(data[‘UTC’'], data[‘Dst’], ‘r-')
>>> axl = fig.add_subplot(212)

>>> axl.plot(data[‘UTC’],data[‘velo’], ‘k-")
>>> ax0.set_ylabel(‘D$_{st}$ [nT]’")

>>> axl.set ylabel(‘V$_{sw}$ [km s$"{1}$]")
>>> axl.set_xlabel(‘UTC’)

f ‘”/%M JV‘HWW‘N@ \ ’W M’H MM A th A

\ M’\ N
AANLAN

Perform Radiation Belt Simulation

>>> from spacepy import radbelt as rb

>>> import datetime as dt

>>> r = RBmodel()

>>> starttime = dt.datetime(2003,10,20)

>>> endtime = dt.datetime(2003,12,5)

>>> delta = dt.timedelta(minutes=60)

>>> r.setup ticks(startime, endtime, delta)
>>> r.evolve()

>>> r.plot(clims=[4,11])

Halloween Storms: Oct. and Nov. 2003

=

i g 10"
10°
10°
107
10°
10°
10*

Phase Space Density

Kp

2
OCrRNWH®™UOGN® e

10 320
DOY in 2003

Superposed Epoch Analysis with OMNI

>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>

>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

from spacepy.seapy import *

import spacepy.omni as om

import spacepy.toolbox as tb

epochs = readepochs(‘epochs.txt’)

st = datetime.datetime(2005,1,1)

en = datetime.datetime(2009,1,1)

einds, oinds = tb.tOverlap([st,en], \
om.omnidatal[‘UTC’])

omnilhr = array(om.omnidata[‘UTC’])[oinds]

delta = datetime.timedelta(hours=1)

window= datetime.timedelta(days=3)

sevx = se.Sea(om.omnidata[‘velo’][oinds], \
omnilhr, epochs, window, delta)

sevx.sea()

sevx.plot()

650

600

H
13) -1 0 1 2
Time Since Epoch [days]

Visualize 2D BATS-R-US Results

import pybats.bats as bats
obj = bats.Bats2d(filename’)
obj.regrid(0.25, [40, 15], [30,30])

ﬁg = figure()
= fig.add subplot(lll)
Obj contourf(ax, “x’', “y', “p')

obj.add body(ax)
obj.add planet field(ax)

Pressure (nPa)

20

10°

GSM Z (R,)

; .
10 0 -10 -20 -30
GSM X (Ry)

Python-Based Tools for the
Space Science Community

Quickly obtain data.

Create publication quality plots.
Perform complicated analysis easily.
Run common empirical models.
Change coordinates effortlessly.
Harness the power of Python.

SpacePy Info
spacepy-info@lanl.gov

The SpacePy Team

Steve Morley Josef Koller
smorley@lanl.gov jkoller@lanl.gov
Dan Welling Brian Larsen
dwelling@lanl.gov balarsen@lanl.gov

Mike Henderson
mghenderson@lanl.gov

» Los Alamos
NATIONAL LABORATORY
EST.1943

What is SpacePy? D3

SpacePy is a package of data analysis
and visualization tools for the space science
community. It is implemented in Python,

a modern, object-oriented programming

language. The goal of SpacePYy is to allow

users to perform as many research tasks

as possible - from obtaining, analyzing and

visualizing data to producing publication

quality graphics - all inside a single, flexible
programming language.

SpacePy functionality is broken into
modules, which include:

* Time, a module dedicated to properly
handling the many complex time formats
found in space science.

e Omni, a module for quickly obtaining data
from the OMNI database.

* Empiricals, a library of commonly used
empirical relationships.

* SeaPy, proper Superposed Epoch
Analysis made easy.

* OneraPy, the powerful Onera library
accessible through Python.

* PyBats, pure Python visualization for
BATS-R-US and the SWMF.

« Association analysis, coordinate
transformations, radiation belt modeling,
CDF reading, and much more.

800 SpacePy: Space Science Tools for Python o
@@@@(g file://10: > G ceoote_ TR
Table of Contents ()| [Home | Trees Indices Help SpacePy: ‘Tools for Python|
Package spacepy Thse gl

[e
Package spacepy

useful. but WITHOUT ANY WARRANTY:

e s o .
SpacePy documentation is available through your
web browser or interactively as you work.

Why Python?®® python # &5

Python is a modern, object oriented
language that has grown to be one of the
most popular available because of its almost
unlimited utility and power. Its clear syntax,
ease of use, portability, and rich standard
library have made it the first choice of many
programmers around the world. Python is
especially suited for scientific programming
because of the SciPy, NumPy, and
MatPlotLib packages. These libraries have
become the foundation for SpacePy, creating
a powerful numerical environment. Most
importantly, all of this software is open
source and free.

006
[RoX X2l -]

Dst and Cross Polar Cap Potential from SWMF

& matplotlib

MatPlotLib provides easy
interactive plotting that
can produce Postscript,

PNG, PDF, and other
high quality outputs.

Dst (7).
Lo
Lok

0980UT TZ00UT 1500 0T 1800UT ZI00UT 00:00 UT
Universal Time -08-31709:00:00

What can | do with Python?

* Create GUIs to interactively explore your
data and graphics.

» Interface web site forms with simple
scripts.

+ Document your code as it is written with
versatile DocStrings.

* Wrap C, C++, Fortran, and other code to
leverage the speed of compiled languages
through a Python interface.

* Write CGI backends for web sites to bring
your data and research directly to users.

» Customize your coding experience
with advanced interactive shells and
development environments.

Get Started

Python, Numpy, and MatPlotLib are required

to use SpacePy. Linux users can find

these in their package manager. Mac OSX

users will find them in Fink or MacPorts.

Distributions that include everything for most

platforms can be found at:
http://enthought.com/products/getepd.php

Get SpacePy

Email spacepy-info@lanl.gov for information
on how to get the latest version.

Get Results
Although it is brand new, SpacePy output
has already been featured in three scientific
articles. SpacePy is being leveraged for
the Radiation Belt Storm Probe satellite
mission science operations center and early
mission planning. The user group and list of
capabilities is constantly growing.

Dst [nT]

Kp (x10)

Vxikms ']

Vy [km's

